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Abstract

A new model is developed for the turbulent dispersion and
deagglomeration of aerosol powders. This model has wide ap-
plication but has particular potentional for understanding and
improving the effectiveness of pulmonary drug delivery. The
model uses a probability density function form of the popula-
tion balance equation involving closed forms of the non-linear
agglomerate birth and death terms thus eliminating the need for
high resolution and making it a good candidate model for en-
gineering design. Preliminary validation of the model is con-
ducted against published experiments for the turbulent disper-
sion of powders in a specially designed deagglomeration rig.

Introduction

Pulmonary drug delivery is commonly used for the topical treat-
ment of lung diseases such as asthma, bronchitis, and chronic
obstructive pulmonary disease. It is potentially an attractive de-
livery route for the systemic treatment of a much wider range
of diseases including diabetes, cystic fibrosis and influenza and
in the treatment of acute cancer pain [1]. The advantages of
pulmonary delivery over oral and intravenous routes include re-
duced cost, improved patient safety and increased biouptake.
Among the pulmonary delivery technologies the dry powder in-
halers (DPIs) have seen the greatest growth in recent decades
driven largely by the simplicity of their operation and absence of
harmful propellants. However, while much effort has been ex-
pended in designing, manufacturing and marketing novel, user-
friendly and affordable devices which are widely used for top-
ical treatments, DPIs continue to exhibit sub-optimum perfor-
mance (e.g. the drug dispersion varies from 12% to 40% of the
loaded dose [2, 3]). Not only do the current combinations of de-
vices and drug formulations result in incomplete dose delivery,
more concerning is the large variability in that delivered dosage
(the fine particle fraction or FPF) from one use to the next or
from one patient to another. While this variability can often be
tolerated for drugs with broad therapeutic windows, it is unac-
ceptable for potent systemic drugs; consequently the range of
DPI application is severely limited.

The delivery of dry powder drugs to the lungs involves a number
of complex and inter-related physical processes. The key pro-
cesses are powder aerosolisation, deagglomeration (i.e. break-
age) of active drug particles from larger carriers and/or drug-
only agglomerates, dispersion of the drug aerosols through the
airways, and deposition. The effectiveness of these processes
in delivering maximum and repeatable dose delivery is depen-
dent on the physico-chemical properties of the powder formu-
lation, the design of the device and the strength of the pa-
tient’s inspiratory air flow. Aerosolisation and dispersion of
powders is quite well understood. Already complementary ex-
perimental and CFD research has identified critical design fea-
tures which enhance those two processes and thus improve DPI
performance [4, 5, 6, 7, 8, 9]. However, the process of deag-

glomeration is much less understood [10]. This is limiting im-
provements in DPI design; failure of the drug particles to break
away from cohesive drug-only agglomerates or adhesive drug-
to-carrier agglomerates directly leads to high rates of drug de-
position on the DPI walls and in the throat and upper airways.
Failure to enhance deagglomeration is a major factor in the
observed low and variable rate of deep lung deposition from
DPIs [11].

Quantitative experimental observation of deagglomeration is
very difficult due to the small size (in the micron range)
and short duration (microsecond range) of breakage processes.
Discrete element numerical simulation is beginning to shed
much needed light on the mechanics of drug powder break-
age [12, 13]. But the cost of these simulations, which resolve
individual micron sized particles, is very high and application
to full scale simulations is not currently possible. For practical
application and computational fluid dynamic informed design
of DPIs it is necessary to model rather than resolve small scale
breakage processes.

Breakage of aersolised agglomerates occurs by two different
mechanisms: i) application a of sudden accelerating force such
as caused by collision with a wall; and ii) application of a shear
force such as caused by a turbulent eddy. The relative impor-
tance of these mechanisms remains contested [1] and the issue
can only be resolved by investigating each in isolation. The aim
of the current paper is to formulate a CFD-based model for tur-
bulent shear deagglomeration based on the population balance
equation (PBE) [15, 16] and to perform preliminary validation
against previous experimental data from a deagglomeration rig
whereby wall impactions were specifically avoided [14].

The model

The system under consideration consists of air (the continuous
phase) and solid powder particles/agglomerates (the discrete
phase). The continuous phase is governed by the well known
equations for conservation of mass and momentum. Reynolds
average forms of those along with equations for turbulence ki-
netic energy, k, and its rate of dissipation, ε, are solved by a
finite-volume method. For the discrete phase we follow the
PBE approach to model the number density of particles at each
location and time. In general the number density field can be
classified according to particle size (volume or length), shape,
surface area, etc., but in this work N is classified according to
volume, v, only. We define N(v) as the number of particles per
unit volume of the continuous phase per unit volume of the dis-
crete phase (dimensions of L−6). The zeroth moment of N is
simply the number density of particles across all sizes (dimen-
sions of L−3):

M0 =
∫

v
Ndv = Np (1)

while the first moment is the volume fraction of the discrete



phase:

M1 =
∫

v
vNdv = v f . (2)

The normalised particle size distribution (PSD), which is off in-
terest to our deagglomeration modelling, is given by N(v)/Np.

Although the powder particles are a discrete phase, their number
density is a continuous function which is modelled as a contin-
uum according to the population balance equation [15]

∂N
∂t

+
∂

∂xi

(
ViN−Dp

∂N
∂xi

)
=

∂

∂v
(GN)+WBD. (3)

In the above xi is the spatial coordinate, Vi =Vi(v) is the particle
velocity in the i direction, Dp =Dp(v) is the Brownian diffusion
coefficient, G=G(v) is the rate of growth of volume due to con-
tinuous surface phenomena such as evaporation and condensa-
tion (G = 0 for our case), and WBD = WBD(v) is a source term
accounting for discontinuous particle births and deaths due to
agglomeration and deagglomeration. A particle of volume v is
born when a larger particle breaks into a number of smaller par-
ticles or upon agglomeration of two smaller particles. Similarly
a particle of volume v dies when it breaks or when it agglomer-
ates with another particle. Thus WBD is the net outcome of births
plus deaths due to deagglomeration and births plus deaths due
to agglomeration:

WBD(v) =W d
B (v)−W d

D(v)+W a
B (v)−W a

D(v). (4)

For dilute powder flows the rates of agglomeration are small
and can be safely ignored [18]. The deagglomeration functions
are further modelled as [15]

W d
B (v) =

∫
∞

v
b(v̂)µ(v|v̂)N(v̂)dv̂ (5)

W d
D(v) = b(v)N(v) (6)

where b(v̂) is the deagglomeration kernal representing the fre-
quency of breakages of particles of size v̂ and µ(v|v̂) is the num-
ber of particles of size v resulting from breakage of a larger
particle of size v̂. For the size range of particles considered
here, deagglomeration forces are caused by a combination of
turbulent shear, drag due to the slip velocity between the dis-
crete and continuous phases and transient acceleration. For par-
ticles smaller than the Kolmogorov length scale turbulent shear
forces dominate while drag and transient acceleration forces
become more important with increasing particle inertia. Ini-
tially we make a simplifying assumption that the powders con-
sist of non-inertial particles (Stokes number << 1) but return
to discussion of inertial particles in the final section of the pa-
per. The turbulent shear rate for an eddy of size l scales as
γ = (ε/l2)1/3. The peak turbulent shear occurs at the Kol-
mogorov scale l = η = (ν3/ε)1/4 leading to γ = (ε/ν)1/2 (ν
is the kinematic viscosity). We use the power-law deagglomer-
ation kernal [19]

b(v) = kγ
yv1/3 (7)

where k and y are material dependent empirical constants. Sim-
ulations are performed for y = 0.71 and 1.85 (extreme bounds
suggested in the literature [19, 21]) and k is found by fitting to
the experimental data at one flow condition. µ(v|v̂) is modelled
probabilistically according to

µ(v|v̂) = µ′P(v|v̂). (8)

where µ′ is the number of daughter particles of all sizes and
P(v|v̂) is the probability density of the daughter particle size
distribution. The literature provides various models for µ′ and

P(v|v̂) [19, 20]. The powder agglomerates considered in this
work consist of a large carrier coated by many similar sized
fines [14] which we assume break individually by erosive shear
rather than a major fracture. We therefore set µ′ = 1 and de-
termine P(v|v̂) by mass and volume conservation constraints.
Future work will consider more realistic models.

The PBE holds for either laminar or turbulent flows although
any numerical method which attempts to directly solve (3) in a
turbulent flow must resolve all the spatial and temporal scales.
For most flows of practical relevance full resolution is not com-
putationally affordable and some form of averaging or statistical
emulation of the turbulent field is required. Reynolds averaging
or spatial filtering of the PBE leaves the non-linear terms un-
closed; specifically this affects the terms involving advection,
continuous growth and discontinuous births and deaths. It is
common to close mean/filtered advection terms using a turbu-
lent diffusivity model. Closure models for the birth and death
terms are less obvious. A naive turbulence closure would sim-
ply use the mean shear rate based in turn on the mean of ε. The
effect of this is hard to determine quantitatively without doing
detailed modelling, however, given the highly intermittent na-
ture of ε, a closure based on its mean value is unlikely to be
accurate. An alternative approach to modelling the moments of
N(v) is to model its full probability distribution and in so doing
alleviate the closure problem. This method has long been ap-
plied to other fields of fluid mechanics such as combustion [22]
and has recently been extended to the modelling of population
balances by Rigopoulos [16].

We start by approximating the number density as a set of dis-
crete nodal values rather than a continuous function:

N(v) = {N(v1), ...,N(vα), ...,N(vM)} (9)

where M is the number of particle volume classes. The tur-
bulent fluctuations of N are represented by the one-time, one-
point joint probability density function (PDF), fN(n) where
n = {n1, ...,nα, ...,nM} is the sample space of N. As usual the
PDF is normalised so that the integral over all volume classes is
unity. The moments of the PDF are useful statistical measures,
for example the mean and variance:

〈N〉=
∫

∞

0
n fN(n)dn (10)

〈N
′2〉=

∫
∞

0
(n−〈N〉)2 fN(n)dn. (11)

The advantage of using a PDF method becomes apparent from
its transport equation [16]

∂ fN
∂t

+Vi
∂ fN
∂xi

+
∂WBD fN

∂nα

=− ∂

∂xi

(
〈V ′i |n〉 fN

)
(12)

+
∂

∂nα

(
〈 ∂

∂xi

(
Dp

∂Nα

∂xi

)
|n〉 fN

)
where WBD is not averaged but instead appears in its exact form.
Note that full closure of WBD requires a model for the instanta-
neous value of ε in order to determine γ in Eq.(7) and this is
discussed in the next section. The Brownian diffusive transport
has been omitted from Eq.(12) on the assumption that it will be
small compared to turbulent mixing. The symbol 〈·|·〉 denotes a
conditional average. The terms on the right hand side of Eq.(12)
need to be modelled and the usual PDF closures suggested in
the literature are used here [22, 16]. We draw attention only to
the conditional dissipation term which does not have a corollary
in the PBE. It represents the molecular dissipation of turbulent
variance and is modelled with a mixing model discussed below
in the context of the Monte Carlo implementation.



Monte Carlo implementation

Since the PDF dimension M >> 1, in general, solving Eq.(12)
via a finite-difference/finite-volume formulation would be pro-
hibitively expensive. Instead a Monte Carlo approach is used
whereby fN is emulated using an ensemble of statistically in-
dependent notional particles each of which represents a single
turbulent realisation of the number density, N(v). Based on con-
cepts of equivalent systems each particle, p, in the ensemble is
governed by the Ito stochastic differential equations

dx(p)
i =

(
〈Vi〉(p)+

(
∂Dt

∂xi

)(p)
)

dt +
√

2Dt
(p)

dwi (13)

dN(p)
α =

(
1

2τm

(
N(p)

α −〈Nα〉
)
+W (p)

BD

)
dt. (14)

In the above dwi is a Weiner process (random walk); over a
time-step of duration ∆t the Weiner increment is ∆wi =

√
∆tζ

where ζ is a normally distributed random variable with a mean
of zero and variance of unity. In this work the conditional dissi-
pation on RHS of Eq.(12) is modelled by a simple linear relax-
ation to the mean mixing model where τm is mixing time-scale
with τ−1

m = 2〈ε〉/〈k〉.

The source term WBD for births and deaths due to deagglomera-
tion is modelled according to Eq.(5) and (6) where the deag-
glomeration kernal b(v) is a function of the shear rate γ =

(ε/l2)1/3. Since the CFD provides only the mean energy dissi-
pation, 〈ε〉, a model is required for its instantaneous value along
trajectories of the Monte Carlo notional particles. In a turbulent
flow ε is highly intermittent and assumed here to have a lognor-
mal distribution. Following Koch and Pope we model the loga-
rithm of the ε as the sum of two independent Orstein-Uhlenbeck
(O-U) processes [23]:

ln
(

ε(t)
〈ε〉

)
= φ(t)+θ(t) (15)

dφ =−
(

φ+
1
2

σ
2
φ

)
dt
τφ

+

(
2σ2

φ

τφ

)1/2

dwφ (16)

dθ =−
(

θ+
1
2

σ
2
θ

)
dt
τθ

+

(
2σ2

θ

τθ

)1/2

dwθ (17)

where σ2 are the variances, τ the timescales and w the indepen-
dent Weiner processes. σ2 and τ can be selected (e.g. using
DNS data) to match the turbulence characteristics along La-
grangian trajectories. For isotropic, homogeneous turbulence
Koch and Pope find the following values [23]:

σφ = 0.55 (18)

τφ =
6.2
Rλ

〈k〉
〈ε〉

(19)

σ
2
φ +σ

2
θ =−0.15+0.25ln

(
3.1R1/2

λ
+0.1R3/2

λ

)
(20)

τθ =

(
0.19

1+4/Rλ

+
6.8(1+4/Rλ)

Rλ ln(0.1Rλ)

)
〈k〉
〈ε〉

. (21)

where the Taylor scale Reynolds number can be modelled as

Rλ =
u′λ
ν

=

2〈k〉
3

(
15ν

〈ε

)1/2

ν
. (22)

The application of the above to our heterogeneous case (see be-
low) requires greater justification but as will be seen the major
characteristics of the energy dissipation field are qualitatively
correct.

Results

Preliminary validation of the new model is performed for the
breakage of powder agglomerates comprised of silica primary
fines (mean size 2.5µm, 1wt%) and borosilicate glass carriers
(mean size 138µm, 99wt%) in the deagglomeration rig reported
in Kurkela et al. [14]. The rig incorporates a steady rate pow-
der feeding mechanism with air flows through the walls of the
device to minimise wall impactions and agglomerate settling.
The dominate breakage mechanism is by turbulent shear with
turbulence provided by a central jet of air (an orifice around
the power feeder with OD=3.7 mm and ID=1.9 mm); results
are reported for jet Reynolds numbers ranging between 7700
and 46000. In the Reynolds averaged flow field is generated
by an in-house CFD code [24] while the PDF-PBE equations
are solved in a new code developed for this work [18]. As yet
two-way momentum coupling between the codes has not been
considered.

An important aspect of the method is that the modelled turbu-
lent shear rate characteristics match those of real turbulence.
The shear rate is a function of the rate of kinetic energy dis-
sipation, ε, which is known to be highly intermittent. Figure
1 (top) shows the instantaneous value of ε normalised by the
mean value, 〈ε〉, taken from the CFD solution. The values are
for a single Monte Carlo particle over a time of 0.14ms. The
intermittency is clearly captured; over most of the time range
shown ε/〈ε〉< 1 although there are rare extreme values greater
than 20. The strong correlation between deagglomeration and
extreme values of the shear rate is evident from Fig. 1 (bot-
tom) which shows the mass of powder deagglomerated (for that
Monte Carlo particle) normalised by the total powder mass in
the system. The gradual period of declining deagglomeration
at early times corresponds to the region near the inlet jet where
most agglomerates are large and so are easily deagglomerated
by the mean flow. Later on the particle sizes are reduced and
deagglomeration only coincides with high values of the shear
rate.
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Figure 1: Top: normalised dissipation for a single Monte Carlo
particle; Bottom: normalised mass deagglomerated for a single
Monte Carlo particle.

The modelled and experimentally observed [14] fraction of pri-
mary fines sampled at the exit of the deagglomeration zone of
the rig are shown in Fig.2. The experimental data clearly shows
the increased fraction of fines due to enhanced deagglomeration
at higher turbulence levels (characterised by Reynolds number).
Model results are for two different values of the exponent y in
Eq.(7). For each value of y we tuned the coefficient k in Eq.(7)
to match the experimental data for the Re=46000 flow then
maintained the same values of y and k for the lower Reynolds



number conditions. We note that these results are preliminary
and further analysis is required to fully test model and numeri-
cal sensitivities. For y = 0.71 there is a very good match with
experimental data although the result obtained for the lowest
Reynolds number case has been omitted due to some uncer-
tainty about numerical convergence. For y = 1.85 the model
underpredicts the fines fraction by a significant margin.
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Figure 2: Fine particle fraction as a function of jet Reynolds
number.

Conclusions and extensions

The probability density function form of the population bal-
ance equation has been extended to incorporate turbulent deag-
glomeration of aerosolised powders. The model will have a
wide range of application especially in the field of pulmonary
drug delivery. The major features of the model are repored
along with its Monte Carlo implementation and the model for
the intermittent rate of turbulence energy dissipation. Prelimi-
nary validation against experimental data shows that the model
can accurately predict deagglomeration provided empirical con-
stants for the breakage kernal are properly selected.

A major simplification in this modelling is the assumption of
non-inertial powder particles. However, most drug formula-
tions developed for dry powder inhalers contain agglomerates
of sufficient size to guarantee that the Stokes numbers >> 1.
Therefore inertial effects should be considered and this is the
subject of ongoing research. Whereas the PDF of number den-
sity for non-inertial particles has been given the phase space
n = {n1, ...,nα, ...,nM}, for inertial particles we will extend that
space to include both particle velocity, Vp, and fluid veloc-
ity seen along the particle trajectores, Us, i.e. the PDF to be
solved is fN

(
n,vp,us;x, t

)
. The PDF transport equation then

becomes [25]

∂ fN
∂t

+Vi
∂ fN
∂xi

+
∂WBD fN

∂nα

=
∂

∂nα

(
〈 ∂

∂xi

(
Dp

∂Nα

∂xi

)
|n,vp,us〉 fN

)
− ∂

∂vp,i

(
〈Ap,i|n,vp,us〉 fN

)
− ∂

∂us,i

(
〈As,i|n,vp,us〉 fN

)
(23)

where Ap and As are the particle and ”seen” fluid accelerations,
respectively.
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